## MATHS WORKSHOP - TUESDAY, NOVEMBER 1st 2016 <br> MULTIPLICATION \& DIVISION - AGENDA

Early Stage One - groups, shares, counts objects $\rightarrow$ everyday language, informal recording

| Early Stage One - concrete experiences of grouping, sharing and counting <br> - group to describe a collection of objects <br> - sharing to describe distribution of objects | Resource |
| :--- | :--- |
| Activity | 1. Faces Activity |
| My 2 friends have 2 lollies each. How many do they have altogether? $\rightarrow$ count by ones initially, |  |
| leads onto skip counting $\rightarrow$ same size sharing |  |
| 2. Reverse Faces Activity |  |
| I have 9 lollies to share with 3 friends. How many do they each get? $\rightarrow$ once shared, they count - |  |
| notion of equal groups/equal sharing |  |

## Stage One - using concrete materials and mental strategies for multiplication and division

Stage One - Initially skip counting, language of "groups of", equal sharing

- Moves into Multiplication strategies (repeated addition, groups and arrays)
- Moves into Division strategies (shared groups turn into arrays)

Background Information: There are two forms of division:
Sharing (partitive) - How many in each group?
e.g. 'If 12 marbles are shared between three students, how many does each get?'

Grouping (quotitive) - How many groups are there?
e.g. 'If I have 12 marbles and each child is to get four, how many children will get marbles?' This form of division relates to repeated subtraction, $12-4-4-4=0$, so three children will get four marbles each.

| Activity | Resource |
| :--- | :--- | :--- |

1. Plate Activity (Multiplication)

I have 5 strawberries on each of my 3 plates? How many strawberries altogether? $\rightarrow$ want students to describe as 5 groups of 3 is 15

## 2. Plate Activity (Division)

If 10 strawberries are shared between 2 people, how many in each group? (SHARING Division)
I have 20 strawberries. How many groups will I have if shared equally between 4 ?
(GROUPING Division)
3. Number Lines Activity (Multiplication)

What are 3 groups of 4 ? Same a $4+4+4$
4. Turn Groups Into Arrays (Multiplication)

What are 2 groups of 3 ? Becomes $\rightarrow$

'two groups of three' or 'three columns of twoe'

## 5. Turn Groups Into Arrays (Division)

How many does each person receive when 10 objects are shared between two people?
6. Repeated Subtraction (Division)

Share 15 stickers between 3 people.
Share $\$ 24$ between 6 people.
-start to explore "left overs"


Stage Two - mental and informal written strategies for multiplication and division


e.g. $27 \times 8=8 \underbrace{$| 20 | 7 |
| :---: | :---: |
| 160 | 56 |}$_{160+56=216}$

3. Repeated Addition for Multiplication
$3 \times 20: 20+20+20=60$
4. Place Value for Multiplication
$3 \times 20: 3 \times 2$ tens $=6$ tens $=60$
5. Using Known Facts
$5 \times 7$ is 35 , so $6 \times 7$ is 7 more, which is 42
$7 \times 8$ is $2 \times 8=16$
6. Doubling and Repeated Doubling for Multiplication $2 \times 8=16$

What is $7 \times 8$ ?
7. Factorising for Multiplication
$5 \times 8$ is the same as $5 \times 2 \times 4$, which becomes $10 \times 4$
8. Link $\times$ and $\div$ for Division (Inverse Operations)
e.g. $6 \times 4=24$ so $24 \div 6=4$ and $24 \div 4=6$
9. Using informal recording methods/concrete materials for Division
-repeated halving to divide by 2,4 or 8
-relationship between division facts, e.g. to divide by 5 , first divide by 10 and then multiply by 2
Stage Three - selects/applies appropriate strategies for multiplication and division, applies order of operations

Stage Three - Strategies of using Place Value, Area Model, Formal Algorithm, Order of Operations

- larger numbers
- word problems
- in division, remainders as a whole number/fraction/decimal
- estimation/rounding off


3. Formal Algorithm
$43 \underset{5}{2} \mathrm{x}$
e.g. $432 \times 5=$

2160
4. Division

Note the different division notations: $25 \div 4,4 \longdiv { 2 5 }, \left.\frac{25}{4} \right\rvert\,$
5. Using Place Value for Division

$$
\begin{aligned}
3200 \div 4 & =800 \\
40 \div 4 & =10 \\
8 \div 4 & =2 \\
3248 \div 4 & =812
\end{aligned}
$$

6. Formal Algorithm for Division

$$
97 \frac{5}{6}
$$

e.g. $587 \div 6=$
$6 \longdiv { 5 8 7 }$
Remainder as a fraction
7. Order of Operations
e.g. $5+(2 \times 3)=5+6=11$

